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Abstract

This paper proposes a neural network model for prediction of olfactory glomerular activity aimed at future application to the
evaluation of odor qualities. The model’s input is the structure of an odorant molecule expressed as a labeled graph, and it
employs the graph kernel method to quantify structural similarities between odorants and the function of olfactory receptor
neurons. An artificial neural network then converts odorant molecules into glomerular activity expressed in Gaussian mixture
functions. The authors also propose a learning algorithm that allows adjustment of the parameters included in the model using
a learning data set composed of pairs of odorants and measured glomerular activity patterns. We observed that the defined
similarity between odorant structure has correlation of 0.3–0.9 with that of glomerular activity. Glomerular activity prediction
simulation showed a certain level of prediction ability where the predicted glomerular activity patterns also correlate the
measured ones with middle to high correlation in average for data sets containing 363 odorants.
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Introduction

The fact that odors affect human memory and emotions

(Manley 1993; Herz and Engen 1996) in addition to enrich-

ing our lives places increased importance on information

related to odorants, especially in the fragrance, food, and

beverage industries (Shahidi et al. 1986; Aznar et al. 2001;
Limpawattana et al. 2001). These industries are eager to find

new techniques for evaluating odors other than sensory eval-

uation, which carries problems related not only to consis-

tency across human panels but also to unstable factors

within such panels, including sensory fatigue and variations

in health condition. The problems inherent in sensory eval-

uation can be solved only when prediction of odor qualities

from odorant molecules becomes possible. In this regard,
recent olfactory system analysis in the field of biological

research is facing similar problems. By way of example,

a combination of behavioral experimentation on rats and

measurement of neural activity suggested a relationship be-

tween odor quality and neural activity on glomeruli distrib-

uted over the surface of the olfactory bulb (Youngentob et al.

2006). Although some lesion studies have suggested that

odor perception is not simply related to activated glomeruli

(Slotnick and Bisulco 2003), thereby leaving room for argu-

ment, another lesion study on mice confirmed that activity in

some glomeruli evokes emotions of fear (Kobayakawa et al.

2007). Although this study suggests the possibility of predict-
ing odor qualities from glomerular activity, the sheer scale of

the whole odorant space (considered to consist of 400 000

kinds of odorant molecules; Mori 2003) precludes exhaustive

measurement. Accordingly, the forecasting of glomerular ac-

tivity from existing sample data is necessary to achieve the

goal of odor quality prediction.

To the best of our knowledge, however, no techniques for

glomerular activity prediction have so far been proposed.
This paper presents a neural network model for glomerular

activity prediction based on the structure of the olfactory

system. Because glomeruli involve signals accumulated from

receptor neurons (Mori 2003), the main issue in predicting

glomerular activity is how the function of receptor neurons

should be modeled. To solve this problem, the proposed

model employs 2 engineered approaches—a graph kernel
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method (Kashima et al. 2004) and an artificial neural net-

work (ANN). The abilities of the model were validated using

high-resolution images of glomerular activity patterns in rats

(accessed through the Glomerular Activity Response

Archive database web site at http://gara.bio.uci.edu). It
should be noted that vertebrates share a common olfactory

structure, meaning that the use of data sets from rats does

not preclude the model’s application to other animals.

Material and methods

Glomerular activity patterns

Glomeruli are round clusters of axon terminals accumulated

from receptor neurons distributed over the surface of the

olfactory bulb. Interestingly, axons from receptor neurons

(which are distributed on the surface of the nasal chamber)

expressing the same receptor proteins accumulate on the
same glomeruli (Mori and Yoshihara 1995). Because each

type of receptor protein binds with specific groups of odor-

ants (Buck and Axel 1991; Skoufos et al. 2000), receptor neu-

rons respond exclusively to particular odorants. As a result,

the glomerular activity patterns evoked on them are also

odor-specific (Mori and Yoshihara 1995; Uchida et al.

2000; Nagao et al. 2002; Mori 2003). In addition, some anal-

ysis data have suggested that activity patterns are related to
odor qualities (Macrides and Chorover 1972; Hoshino et al.

1998; Youngentob et al. 2006; Kobayakawa et al. 2007).

These patterns have been revealed only recently using the

2-deoxyglucose method, and a database on them is provided

online (the Glomerular Activity Response Archive, available

at http://gara.bio.uci.edu/; Johnson and Leon 2007). Activ-

ities are normalized to a z-score so that the activity strength

becomes independent of odorant concentration. Further, ac-
tivity patterns are shown on a 2D map expanded from the

surface of the olfactory bulb (see Figure 1).

Using these measured activity patterns, the parameters of

the proposed model were adjusted and prediction accuracy

was evaluated. Because the Glomerular Activity Response

Archive provides activity patterns only in image format,

all patterns used in this study were quantified according

to the color correspondence described on the web site.
The patterns were then divided into a lattice with 1805

squares as shown in Figure 1, where the number of the

squares is derived from the actual number of glomeruli

(about 2000) found on the olfactory bulb of rats. The pur-

pose of the proposed model is thus to predict the activity

strength of each lattice from an input odorant.

Marginalized graph kernel

The marginalized graph kernel is a kernel definition for im-

plementation of graph kernel method (Kashima et al. 2004)
and was used for analysis of quantitative structure–activity

relationships (Mahé et al. 2005). This kernel, which is em-

ployed for calculation of receptor neuron response, provides

metrics of similarity between 2 labeled graphs (for odorant

molecules in this case) by calculating the probability of corre-

spondence for partial structures as shown in Figure 2. Labeled

graph representations of odorant molecules G̃mðṼm; ẼmÞand
GqðVq;EqÞare shown in Figure 3, where the atoms and bonds,
respectively, correspond to nodes V 2 ṼmVq and edges

E 2 ẼmEq. In addition, unique labels are assigned to nodes

(N1, N2, . . .) and bonds (E1, E2, . . .) depending on the type

of atom and bond. The following equation describes the

Odorants
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Piriform cortex
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neurons Glomerulus

Measured glomerular

activity

.....
.
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Figure 1 Schematic figure of receptor neurons and glomeruli.
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Figure 2 Labeled graph expression of odorant molecules for the
marginalized graph kernel. For marginalized graph kernel calculation, the
odorants are expressed using a labeled graph in which, for example, N1 and
N2 correspond to oxygen, carbon and hydrogen, respectively, whereas E1
and E2 correspond to the bond type. Calculation is carried out to find the
total correspondence of partial structures, which are shown as sequences of
labeled nodes and edges.
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marginalized graph kernel used for calculating the similarity

between 2 graphs (Kashima et al. 2004):

KðG̃m;GqÞ=
X

hm2VM

X
hm2VM

pðhmÞpðhqÞKLðbðhmÞ; bðhqÞ
�
; ð1Þ

KLðbðhmÞ; bðhqÞÞ =
�
1; bðhmÞ= bðhqÞ;
0; bðhmÞ 6¼ bðhqÞ;

ð2Þ

where hm and hq are the paths of the graphs consisting of

sequences of nodes and edges, pðhmÞ and pðhqÞ are the prob-
abilities of occurrence for paths hm and hq, and
KLðbðhmÞ; bðhqÞ

�
is a function that calculates the correspon-

dence of the labels of hm and hq. Only when the paths selected

from the 2 graphs share exactly the same structure,

ðbðhmÞ = bðhqÞ
�
are the probabilities of this correspondence

ðpðhmÞ
�
pðhqÞ

�
added up.

The probabilities pðhmÞ and pðhqÞ are defined using the con-
cept of the random walk algorithm shown in Figure 3. Con-

sidering a path h starting from nodeV1, then passing through
nodesV2;V3; . . . ;VR – 1 and ending at nodeVR, the following

equation gives the probability pðhÞ for the occurrence of path
h:

pðhÞ =
(
ps
YR
r= 1

pðVrjVr – 1Þ
)
pe; ð3Þ

which is a multiplication of the starting probability ps from

node V1, the sequence of transition probabilities pðVrjVr – 1Þ
(r = 1, 2, . . .,R) and the ending probability pe at nodeVR. The

randomwalk algorithm selects the starting nodeV1 using the
uniform probability ðPs = 1=NmaxÞ (shown in eq. 3 and Fig-

ure 3a), whereNmax is the total number of nodes in the graph.

The transition probability pðVrjVr – 1Þ from node Vr – 1 to the

next node Vr is then given depending on the number of

Nneighbor neighboring nodes described by the following equa-

tion (see Figure 3b):

pðVrjVr – 1Þ = ð1 – peÞ
1

Nneighbor

; ð4Þ

where pe is the constant probability when the random walk

ends at node Vr – 1.

This marginalized graph kernel is now finding application
in the field of chemical informatics (Ralaivola et al. 2005)

because it enables the definition of structural similarities be-

tween arbitrary chemical compounds. The next section ex-

plains the application of the proposed model to the

prediction of neural activity on glomeruli.

Proposed model

In order to construct a prediction model for glomerular ac-

tivity, 2 problems must be solved: the first is the large variety

of possible odorants, which increases the difficulty of param-

eter adjustment, and the second is the complexity of the bind-

ing mechanism between receptor neurons and receptor

proteins. As a solution to the first problem, the model takes

the form of a neural network structure. The learning ability

of the neural network enables automatic parameter adjust-
ment from a sample data set. Figure 4 shows the structure of

the proposed model, which is composed of a receptor layer, 2

hidden layers, a Gaussian layer and an activity pattern layer.

The second problem is solved in the receptor layer using the

marginalized graph kernel (Kashima et al. 2004) described in

the last section. The model’s structure is outlined below.

Model structure

Receptor layer

Receptor neurons are activated by a wide variety of odorants

depending on the type of receptor protein expressed on their
surface (Buck and Axel 1991). Because the binding between

receptor proteins and odorants involves a number of molec-

ular properties, each receptor neuron has a highly complex

receptive range (Araneda et al. 2000). In this study, we fo-

cused on the structure of odorants as a determinant evoking

neural activity because although it has now been found that

stereochemical theory (Amoore 1963) is oversimplified, sev-

eral studies have reported the importance of molecular struc-
ture considerations such as functional group and molecular

length (Araneda et al. 2000; Haddad et al. 2008). This mo-

tivated us to employ the graph kernel method, which can

quantify similarities between molecular structures, to ap-

proximate the function of receptor neurons.

The receptor layer of the proposed model consists of M

receptor units (see Figure 4). Assuming that a representative

odorant evokes a particular receptor unit the most, the re-
sponse to the odorant is defined by the similarity between

an input odorant and the representative odorant. The recep-

tor layer consists of M receptor units represented by
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Figure 3 Probability of path occurrence. The probabilities of path
matching represent a measure of the similarity between graphs. The
occurrence of a path is defined by the probability obtained from a random
walk algorithm. (a) The starting and ending probability. Assuming that the
random walk can uniformly start at any node, the occurrence for a particular
starting node is defined as ps = 1/(total number of nodes). In addition,
assuming the random walk can stop at any node with the same probability,
the occurrence for ending nodes is a constant value pe. (b) The transition to
successive nodes with a probability of (1 - pe), where pe = 0.1 (see eq. 4).
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marginalized graph kernel as described in the last section.

The output of the receptor unitU1
m is normalized to the range

of [0, 1] using the following equation:

U1
m =

KðG̃m;GqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðG̃m; G̃mÞKðGq;GmÞ

q ; ð5Þ

where Kð�; �Þ is the marginalized graph kernel defined in

equation (1), and G̃m and Gq are the representative odorant

and input odorant, respectively, in the labeled graph expres-
sion. In addition, each atom was labeled using its atom name

together with the Morgan index value (Morgan 1965; Mahé

et al. 2004) as shown in Figure 5. This setting prevents the

random walk algorithm from generating the same path for

different structures. Otherwise, paths extracted from a ring

structure and a straight chain structure, for example, would

be identical if the same labels were used. The Morgan index

assigns a number to each atom using iteration calculation.

For the first iteration, an index value of 1 is assigned to

all nodes. For subsequent iterations, the index of each atom

is calculated by summation of the numbers assigned to its

neighboring nodes. In this study, we set the number of iter-

ation to 5.
Figure 6 shows the relationship between odorant struc-

tures and the output of a receptor unit. The calculation is

performed using equations (1–5). In the figure, geranyl ace-

tate (shown on the left) is set as a representative odorant, and

the output to each odorant is shown in the lower row. This

figure illustrates how output falls with larger structural dif-

ferences between odorants.

Hidden layers

Hidden layers are classic feed-forward neural network model

elements that convert the input from the receptor layer into

the strength of the activity at the connected region on the

glomerular layer. Each of the 2 hidden layers consists of

MN sigmoidal function units. Here,N represents the number

of Gaussian functions assumed to approximate the major
glomerular activity evoked by the representative odorant.

The outputs of the hidden layers are, respectively, given

by the following equations:

U2
j =

1

1 + exp
�
– a

�P
m wm;jU1

m – h
��; ð6Þ

U3
k =

1

1 + exp
n
– a

�P
j wj;kU

2
j – h

�o; ð7Þ

where a and h are the gain and threshold constant of the sig-
moidal function, respectively.

Gaussian and activity pattern layers

The outputs of the hidden layers are input to the Gaussian

layer through connective weights wk;l and generate the glo-

merular activity strength according to the following equa-

tion:

Figure 4 Structure of the proposed model. The proposed model consists
of a receptor layer, two hidden layers, a Gaussian layer and an activity
pattern layer. The odorant structures are represented by labeled graphs.
Each unit in the receptor layer has a representative odorant that activates
the unit the most. The output of the receptor layer is determined by the
structural similarity between the representative odorant and the input
odorant. The output of the receptor layer is converted into peak values of
Gaussian units in the Gaussian layer through the hidden layers. Each
Gaussian function is allocated to different coordinates on the activity
pattern, and the glomerular activity pattern is represented by the sum of the
Gaussian functions. This figure appears in color in the online version of
Chemical Senses.
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Figure 5 Label settings with the Morgan index. The Morgan index is
introduced to differentiate odorant structures by calculation using a simple
iterative algorithm. The left side shows the initial state in which the integer 1
is assigned to each node. The center of the figure shows the state of
Iteration 2, where the value assigned to each node is the sum of the values
assigned to the neighboring nodes in Iteration 1. The right part of the figure
shows the state of Iteration 3 with the same process repeated.
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Figure 6 Output U1
m calculated using marginalized graph kernel. The

upper row shows odorants, and the lower row shows their calculated graph
kernel values in relation to the representative odorant (geranyl acetate).
Calculation is carried out using equations (1–5), and the number of
iterations for the Morgan index was set to 5. These values indicate the
similarity between odorants and are defined as the output of the receptor
layer.
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U4

l;ðx;yÞ =
X
k

wk;lU
3
kexp

n
– aðxc;l – xÞ2 – bðyc;l – yÞ2

o
; ð8Þ

where ðxc;l ; yc;lÞ denotes the center coordinates on the activ-

ity pattern layer to which a Gaussian unit is connected, and

the parameters a and b control the width of the Gaussian

curve. The activity pattern layer consists of 1805 linear func-

tion units each allocated to a set of coordinates correspond-

ing ðx; yÞ to the lattice squares shown in Figure 1. The units

add up the input from the Gaussian layer according to the

following equation:

U5

0;ðx;yÞðGqÞ=
X
1

U4

l;ðx;yÞ: ð9Þ

Consequently, the glomerular layer allows the prediction of

glomerular activity U5

0;ðx;yÞðGqÞ for an input odorant Gq.

Figure 7 Comparison between the proposed model using marginalized graph kernel and the multidimensional metric. (a) The data set of pairs of odorants
and activity patterns (from the Glomerular Activity Response Archive) used for comparison. (b) The correlation of activity patterns with the proposed method
using marginalized graph kernel and multidimensional metric. The multidimensional metric shows the reversed trend because it is a metric of dissimilarity,
whereas others deal with similarity. (c) The average correlation of activity patterns with the proposed method and multidimensional metric. Horizontal axis
shows each odorant dataset. Error bars reflect correlation confidence interval at 0.05. The both metric have equivalent correlation value. This figure appears in
color in the online version of Chemical Senses.
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Although the number of linear units is determined based on

the order of the actual number of glomeruli, it should be noted

that individual units do not correspond to actual glomeruli;

we do not intend to predict the activity of each glomerulus.

Learning algorithm

To enable automatic adjustment of the parameters included

in the model so that it can estimate the corresponding glo-

merular activity from the input odorant, a 2-step learning

algorithm is proposed. Before learning, an arbitrary odorant

data set that contains L odorants and corresponding glomer-

ular activities is divided into learning data set 1, learning data

set 2, and a validation data set.

Step 1

Using learning data set 1, step 1 allocates the Gaussian func-

tions at the proper coordinates on the glomerular layer and

adjusts the width of the Gaussian curve. Each glomerular

activity pattern is approximated using different N Gaussian

functions. This process is carried out using the orthogonal

least squares learning algorithm developed by Chen et al.

(1991) generally used for function approximation of radial

base function networks.

Step 2

Step 2 adjusts the connective weights between each layer

ðwm;j;wj;k;wk;lÞ using learning data sets 1 and 2. In this step,

odorants in learning data set 1 are first assigned to receptor

units as representative odorants. The odorants in data sets 1

and 2 are then input to the model so that the hidden layer

produces peak values for the Gaussian functions according

to equation (8). As a result, the output of the glomerular
layer approximates the measured glomerular activity pat-

tern. Finally, a steepest-gradient method called RPROP

(Riedmiller and Braun 1993) is employed to adjust the con-

nective weights throughminimization of the sum of themean

squared errors (MSEs) between the outputs of the glomeru-

lar layer and the measured glomerular activity with the fol-

lowing equation:

EðGqÞ=
1

1805

XX ;Y

x;y

�
U

T ;ðx;yÞðGqÞ –U5

ðx;yÞðGqÞ
�2

; ð10Þ

where U
T ;ðx;yÞðGqÞ is the measured activity at coordinates

(x,y) for input odorant Gq, and 1805 is the total number

of linear units on the glomerular layer.

Results

Comparison between the marginalized graph kernel used in

the proposed model and the multidimensional metric

This section validates the ability of the marginalized graph

kernel used in the proposed model by comparing it with the

multidimensional metric proposed by Haddad et al. (2008).

This metric uses the Euclidian distance between 1664 odor-

ant descriptors to represent the difference between odorants.

Haddad et al. reported that the metric better correlates with

the neural response reported in previous studies (Kaluza and
Breer 2000; Johnson et al. 2002) than traditional metrics such

as the carbon atom number. For comparison, we employed

the same strategy and odorant data set.

Before outlining the analysis results, let us introduce activ-

ity correlation rA referring to the similarity of glomerular

activities defined by the correlation between them and the

graph kernel value referring to the structural similarity of

odorants calculated using the marginalized graph kernel.
In addition, we propose the kernel-activity correlation rk re-

ferring to the correlation between the activity correlation rA
and the graph kernel value.

First, comparison was implemented with a relatively small

data set that shares the same structure (except the carbon

atom number) consisting of aliphatic aldehydes with 5–10

carbons (C5–C10). The corresponding neural activity was

ascertained from the Glomerular Activity Response Archive
(Johnson and Leon 2007) rather than adopting that of olfac-

tory neurons (Kaluza and Breer 2000) used in the study of

Haddad et al. (2008) because our objective was to predict

glomerular activity. As a result, the graph kernel value

was seen to have a high level of correspondence to glomer-

ular activity patterns, with a correlation of rk = 0.93 (p = 6.4 ·
10–7) as shown in Figure 7, whereas the same value was –0.69

(p = 0.03) for the multidimensional metric. It should be noted
that the sign of the correlation coefficient for the

Learning epoch

M
ea

n
 s

q
u

ar
ed

 e
rr

o
r

Initial output Output after

learning process

Approximated

activity

Measured

activity

Activity patterns of Pentanol

(a)

(b)

0

10

20

30

101 102100

Figure 8 Learning results for the data set obtained from Johnson et al.
(2002). (a) The learning process successfully reduced the error between the
outputs of the model and the measured glomerular activities. The upper side
of (b) shows the approximated activity using the same number of Gaussian
functions as the model, which facilitates comparison and evaluation
between the outputs of the model and the measured activities. The lower
side of (b) shows the learning ability of the model using pentanol as an
example and compares the initial outputs of the model before and after the
learning process. This figure appears in color in the online version of
Chemical Senses.
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multidimensional metric is reversed because it measures dis-

similarities between odorants, whereas the other one meas-

ures similarities. Although it appears that the

multidimensional metric underperformed the marginalized

graph kernel in this case, in the original paper of Haddad
et al., the multidimensional metric was compared with a dif-

ferent neural activity data set (percentages of discriminating

olfactory neurons; Kaluza and Breer 2000), and the authors

reported a correlation of r = 0.84 (p = 0.004). This result sug-

gests that the marginalized graph kernel can equally account

for neural activity as the multidimensional metric does in the

case of odorants from a single chemical family.

We then used a more diverse odorant set (Johnson et al.
2002) for comparison. This data set contains 54 odorants in-

cluding carboxylic acids, ketones, alcohols and so on. The

activity patterns adopted for this comparison were the same

as those used in Haddad’s study. The kernel-activity corre-

lation obtained in this way was 0.30 (p = 3.5 · 10–13) and was

about 0.30 (p < 1 · 10–10) for the multidimensional metric.

Therefore, an equivalent correlation values were observed.

From the results described above, we considered the pos-
sibility of estimating the glomerular activity space using

multiple marginalized graph kernel axes. Although, the mar-

ginalized graph kernel principally cannot describe odorant

properties besides structural similarity, this simplification

brings an advantage over the multidimensional metric in that

it requires only one algorithm for calculation while offering

a nearly equivalent level of performance. It should be men-
tioned that Haddad et al. also proposed an optimized mul-

tidimensional metric and obtained a correlation of about r =

0.55 (p < 1 · 10–10) regarding the data set (Johnson et al.

2002). In our model, a similar optimization technique was

applied using the neural networks as well as predicting glo-

merular activity.

Learning and prediction abilities of the model

This section reports on verification of the learning algorithm

and the prediction ability of the proposed model. The sim-

ulation described here was implemented using Matlab nu-

merical computing software. To test the model, we

questioned its abilities in 2 areas: (i) its capacity to predict

the glomerular activity measured in the previous study

and (ii) prediction result accuracy when a data set suitable

for the proposed model is provided.
Firstly, the model was tested employing a data set (Q = 54

odorants) listed in a previous study by Johnson et al. (2002)
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Figure 9 Prediction results for the data set obtained from Johnson et al. (2002). (a) Example of prediction results. The 3 best and worst predicted glomerular
activity patterns are shown in the upper column, and the measured activity patterns are shown in the lower column. In addition, a predicted result with an
activity correlation of about rA = 0.5 is shown in the center for reference. (b) Histogram showing prediction accuracy. The horizontal axis is the activity
correlation between predicted and measured activity patterns, and the vertical axis is the number of odorants in each bin of activity correlation. This figure
appears in color in the online version of Chemical Senses.
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as used for analysis of the marginalized graph kernel in the
last section. Simulation was performed under the following

conditions:

1. Data sets—Q = 54 odorants were randomly divided into

3 data sets: learning data set 1 contained 15 odorants as-

signed to receptor units as representative odorants,

learning data set 2 contained 15 odorants, and the other

24 odorants fell into the validation data set.

2. Neural network structure—the unit numbers for each

layer were set as follows: M = 15 units for the receptor

layer (corresponding to the number of representative

odorants) and J = K = L = MN = 75 units for the hidden
layers and the Gaussian layer.

3. Learning algorithm parameters—learning step 1, in

which every glomerular activity was approximated using

different N = 5 Gaussian functions, was stopped when

the rate of decrease in the MSE became lower than 1
· 10–6, or when the number of learning epochs exceeded

30 000. Learning step 2 was stopped when the MSE (see

eq. 9) fell below the learning goal of E = 1 · 10–3 or when

its rate of decrease become lower than 1 · 10–6.

4. Evaluation—The prediction target of the measured activ-

ity pattern was smoothed using the same number of

Gaussian functions as those included in the model. Pre-
diction accuracy was evaluated from the correlation with

these smoothed activity patterns. This evaluation process

allowed us to focus on the learning and prediction abilities

of the model while avoiding errors caused by comparison

between smoothed and unsmoothed activity patterns.

Figure 8 shows the results of the learning simulation. Al-

though the learning goal was not met, the MSE decreased to

a level very close to it (Figure 8a). Figure 8b shows an exam-

ple of the glomerular activity indicated by the model before

and after learning and indicates an improvement in output.

After this learning process, the proposed model could pro-

duce learned glomerular activity with an activity correlation
of rA> 0.99 for all odorants in learning data sets 1 and 2. This

result confirmed its learning ability.

Prediction simulation was then carried out. Figure 9a shows

the 3 best and worst prediction results and Figure 9b is

a histogram showing the prediction performance for the

odorants in the validation data set. Simulation was repeated

10 times with randomly shuffled data sets. The results showed

that 63.2± 10.7% of predicted activity patterns correlated with
measured ones with an activity correlation of rA> 0.5 (note the

example of the activity pattern with rA > 0.5 in the center of

Table 1 Odorant list

1-Decanol Hexanal 2,3,5-Trimethylpyrazine

1-Heptanol Dodecane 2,3-Dimethylpyrazine

1-Hexanol Tridecane 2,5-Dimethylhexane

1-Nonanol Tetradecane 2,5-Dimethylpyrazine

1-Octanol Hexadecane 2,6-Dimethylpyrazine

1-Pentanol 1,3,5-Triisopropylbenzene 2-Decanone

Decanal 1,7-Octadiene 2-Methylheptane

Nonanal 1,7-Octadiyne 2-Nonanone

Octanal 2,3,4-Trimethylpentane 2-Octynoic acid

Heptanal 2,3,5,6-Tetramethylpyrazine 2-Undecanone

5-Methylfurfural Isoamyl butyrate trans, trans-2,4-decadienal

9-Decen-1-ol Menthyl isovalerate trans-2-tridecenal

Adoxal Methyl heptanoate Undecane

a-Angelica lactone Methyl octanoate

Amyl acetate Methyl-trans-2-octenoate

Decane Nonane

Dodecanal Norbornane

Ethyl caprylate Pentyl propionate

c-Undecalactone Phenyl propionate

Hexyl acetate Phytol
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Figure 9a). In addition, the average correlation coefficient was

0.55 ± 0.26. These results show a certain level of prediction
ability for the proposed model.

Prediction performance was then tested in a case where all

odorants in the data set had a higher kernel-activity correla-

tion. A data set containing 53 odorants with a kernel-activity

correlation of rk > 0.5 was extracted from the 363 odorants in

the database. The odorant list is shown in Table 1. Using the

same process as that outlined for the first simulation, learning

and prediction were performed. Figure 10 shows an example
of the best and worst prediction results along with a histogram

of prediction accuracy. The results indicated that, despite

some prediction difficulty for a few odorants, most activity

patterns were successfully predicted. Simulation was repeated

10 times with random selection of the learning data set and the

validation set. It was observed that about 79.9 ± 5.5% of pre-

dicted glomerular activities showed an activity correlation of

rA > 0.5 to the measured ones, and average correlation was
0.67 ± 0.21. These results confirmed the prediction ability

of the model when a suitable data set is provided.

Further, Figure 11 summarizes the prediction accuracy of

simulation performed on the 2 data sets. These results suggest
that themodel predicts significantly better for the data set con-

taining odorants with a high kernel-activity correlation.

Discussion

This paper proposed a glomerular activity prediction

method using a combination of the graph kernel method
and neural network. Here, we discuss about contribution

of the both method on prediction ability.

The simulation results showed that prediction accuracy de-

pends on the kernel-activity correlation of the odorants in-

cluded in data sets. To clarify this dependency, relationship

between prediction accuracy and kernel-activity correlation

for each prediction target odorant is tested.

Figure 12 shows the relationship of the data set obtained
from Johnson et al. (2002). As shown in Figure 12, a middle

correlation of 0.33 (p = 2 · 10–7) between them was found,

meaning that when the prediction target is an odorant whose
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Figure 10 Prediction results for the data set containing odorants with a high kernel-activity correlation. (a) The predicted and measured activity patterns
when both the learning data sets and the validation data set contain odorants with a kernel-activity correlation of rk > 0.5. (b) The accuracy of prediction
through a histogram of the correlation between predicted and measured activity patterns. This figure appears in color in the online version of Chemical Senses.
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structural similarity to other odorants correlates to the sim-

ilarity of activity patterns, prediction accuracy tends to be

high. This result also suggests that prediction accuracy

can be improved by improving the calculation algorithm

of the graph kernel method.
We then tested advantages of using a neural network over

more straightforward and simpler method. The model’s per-

formance was compared with a simple prediction method in

which the activity of the learning data set odorantmost closely

related to the prediction target (i.e., the one with the highest

graph kernel value) is found, and its activity pattern is taken as

the prediction result. This evaluation protocol was imple-

mented to validate the ability of the neural network that
merges multiple activity patterns in learning data set 1 to pre-

dict that of the target odorant. Simulation was implemented

using 100 pairs of odorants and glomerular activity patterns

were randomly selected as a data set for simulation out of the

363 provided in the Glomerular Activity Response Archive

(Johnson and Leon 2007). In the selected data set, learning

data sets 1 and 2 each consisted of 25 random odorants.

The other 50 odorants were used for validation.

The configurations for the simulation were set to the same

as that in the simulation in the last section. The histogram in
Figure 13 shows the distribution of prediction accuracy for

500 prediction targets (50 odorants/trial · 10 trials). Com-

paring the prediction results of the model (red bars) and

those of the simple method (gray bars), it is observed that

the proposed model predicted more activity patterns corre-

lating with the measured ones with rA > 0.5 and fewer pat-

terns with rA < 0.5 than the simple method. The percentage

of activity pattern predictions with rA > 0.5 was then com-
pared using a t-test at significance level 0.001 as shown in

Figure 13b. These results confirmed that the proposed model

had a significantly better level of prediction ability (60.1 ±

4.4%) than the simple method (38.8 ± 6.0%). The model also

predicted significantly better average correlation between

predicted and measured activity patterns (0.53 ± 0.25) than

the simple method (0.38 ± 0.28) as shown in Figure 13c.
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Figure 12 Scatter plot of prediction accuracy and its kernel-activity
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10�7). Accordingly, when the prediction target has a higher kernel-activity
correlation, better prediction results can be expected.
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performance of the proposed model regarding a data sets obtained from
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Figure 13 Performance comparison between the proposed model and
a simple method. (a) Prediction accuracy between the proposed model
(black bars) and a simple method (white bars) that predicts activity patterns
by taking that of the odorant with the highest graph kernel value (i.e., the
most closely related odorant). (b) The average correlation between
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the predicted activity pattern correlates with the measured ones at rA > 0.5.
As a result of T-test at significance level 0.001, we confirmed that the
proposed model performed better prediction.
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Advantages of using neural network thus were confirmed

from these comparison results.

Conclusion and future work

The purpose of this study was to predict glomerular activity

patterns. The proposed method employed a combination of

a neural network model and a graph kernel method.

The marginalized graph kernel, which is one of the defini-

tions for implementation of graph kernel method, serves as

a simple way to define a metric of structural similarity be-

tween 2 molecules (odorants) (Kashima et al. 2004). As pre-
vious studies reported that the structure of an odorant is an

important determinant for neural response (Araneda et al.

2000; Johnson and Leon 2007), the marginalized graph ker-

nel was applied for the first stage of glomerular activity pre-

diction. Its ability was verified in comparison to the

multidimensional metric proposed by Haddad et al., which

accounts for neural response with mid-to-high correlation

(Haddad et al. 2008). The marginalized graph kernel has
a critical advantage in that it requires only a single algorithm

for calculation, in contrast to the multidimensional metric,

which requires 1664 kinds of odorant properties and thus

the same number of calculation algorithms.

The neural network model is intended to convert graph

kernel values into activity patterns. The neural network

has the important feature of allowing automatic parame-

ter adjustment using a variety of sample odorant data sets
(learning data sets); otherwise, it would be impossible to

approximate the complex relationships between multiple

graph kernel values and activity patterns. The learning

simulation confirmed that the model successfully con-

verted learned odorants into corresponding activity pat-

terns. We then repeated learning and prediction

simulation using different data sets and observed a certain

level of prediction ability in the model. We also observed
a significantly higher level of prediction ability compared

with a simple method in which the activity pattern is pre-

dicted using that of the data set odorant most closely re-

lated to the prediction target (i.e., the one with the highest

graph kernel value).

Although these simulation results confirmed a certain level

of predictability for glomerular activity, prediction accuracy

needs to be improved. We consider that the following 2 tasks
should be addressed to improve the model. First, the graph

kernel method should be improved as enantiomers would be

classified as identical even though they evoke distinct activity

patterns (Rubin andKatz 2001). Prediction ability can there-

fore be improved by expanding the algorithm to allow eval-

uation of enantiomers. Another task is to increase the

number of input dimensions for improvement. As previous

studies have suggested that neural activity is not determined
simply by odorant structures (Soucy et al. 2009), improve-

ment of the model will necessarily be limited unless other

odorant properties are added as inputs.

Due to the enormous variety of odorants in existence, we

believe the proposed approach is necessary for future inves-

tigation into the features of glomerular response and that it

can serve as a simulation tool to help reveal the mechanisms

behind the olfactory system.
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